High Resolution X Chromosome-Specific Array-CGH Detects New CNVs in Infertile Males
نویسندگان
چکیده
CONTEXT The role of CNVs in male infertility is poorly defined, and only those linked to the Y chromosome have been the object of extensive research. Although it has been predicted that the X chromosome is also enriched in spermatogenesis genes, no clinically relevant gene mutations have been identified so far. OBJECTIVES In order to advance our understanding of the role of X-linked genetic factors in male infertility, we applied high resolution X chromosome specific array-CGH in 199 men with different sperm count followed by the analysis of selected, patient-specific deletions in large groups of cases and normozoospermic controls. RESULTS We identified 73 CNVs, among which 55 are novel, providing the largest collection of X-linked CNVs in relation to spermatogenesis. We found 12 patient-specific deletions with potential clinical implication. Cancer Testis Antigen gene family members were the most frequently affected genes, and represent new genetic targets in relationship with altered spermatogenesis. One of the most relevant findings of our study is the significantly higher global burden of deletions in patients compared to controls due to an excessive rate of deletions/person (0.57 versus 0.21, respectively; p = 8.785×10(-6)) and to a higher mean sequence loss/person (11.79 Kb and 8.13 Kb, respectively; p = 3.435×10(-4)). CONCLUSIONS By the analysis of the X chromosome at the highest resolution available to date, in a large group of subjects with known sperm count we observed a deletion burden in relation to spermatogenic impairment and the lack of highly recurrent deletions on the X chromosome. We identified a number of potentially important patient-specific CNVs and candidate spermatogenesis genes, which represent novel targets for future investigations.
منابع مشابه
Applications of multiplex ligation-dependent probe amplification (MLPA) method in diagnosis of cancer and genetic disorders
Introduction: Lots of human diseases and syndromes result from partial or complete gene deletions and duplications or changes of certain specific chromosomal sequences. Many various methods are used to study the chromosomal aberrations including Comparative Genomic Hybridization (CGH), Fluorescent in Situ Hybridization (FISH), Southern blots, Multiplex Amplifiable Probe Hybridisation (MAP...
متن کاملMolecular Dissection Using Array Comparative Genomic Hybridization and Clinical Evaluation of An Infertile Male Carrier of An Unbalanced Y;21 Translocation: A Case Report and Review of The Literature
Chromosomal defects are relatively frequent in infertile men however, translocations between the Y chromosome and autosomes are rare and less than 40 cases of Y-autosome translocation have been reported. In particular, only three individuals has been described with a Y;21 translocation, up to now. We report on an additional case of an infertile man in whom a Y;21 translocation was associated wi...
متن کاملX Chromosome-Linked CNVs in Male Infertility: Discovery of Overall Duplication Load and Recurrent, Patient-Specific Gains with Potential Clinical Relevance
INTRODUCTION Spermatogenesis is a highly complex process involving several thousand genes, only a minority of which have been studied in infertile men. In a previous study, we identified a number of Copy Number Variants (CNVs) by high-resolution array-Comparative Genomic Hybridization (a-CGH) analysis of the X chromosome, including 16 patient-specific X chromosome-linked gains. Of these, five g...
متن کاملReference-unbiased copy number variant analysis using CGH microarrays
Comparative genomic hybridization (CGH) microarrays have been used to determine copy number variations (CNVs) and their effects on complex diseases. Detection of absolute CNVs independent of genomic variants of an arbitrary reference sample has been a critical issue in CGH array experiments. Whole genome analysis using massively parallel sequencing with multiple ultra-high resolution CGH arrays...
متن کاملO-27: Genome Instabilities in Preimplantation Development Leading to Genetic Variation between Tissues of Normal Human Fetuses
Background: Origin of midlife copy number variations (CNVs) between tissues in non-genetic diseases is unknown. Such genomic differences caused by post-zygotic events. They might either happen during the life or due to prevalent mosaicism in preimplantation stage. We aim to explore fetal mosaicism and its origins. Materials and Methods: Two apparently normal fetuses were achieved following the ...
متن کامل